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CONCENTRATION FIELD OF PARTICLES EJECTED INTO A NONHOMOGENEOUS 

ATMOSPHERE BY A MOVING SOURCE 

V. P. Kabashnikov UDC 533.6:551.510 

We obtain and analyze analytical expressions describing the space-time evolu- 
tion of the density of solid particles ejected into the atmosphere. 

Solid or liquid particles ejected as combustion products from aircraft engines are one 
of the important factors of man's influence on the earth's atmosphere [i]. In solid-fueled 
engines up to 1/3 of the weight of the exhaust is made up of metal-oxide particles whose 
typical size is of the orders of a few microns [2, 3]. The purpose of the present paper is 
to study theoretically the space-time structure of the exhaust trail of particles produced 
by a moving aircraft. 

In the dense layers of the atmosphere the particles are carried along completely by the 
gaseous components of the exhaust and the distribution of particles is therefore similar to 
the concentration distributions of the gas components. However it is known that the velocity 
relaxation length (i.e., the distance the particle falls during the velocity relaxation time) 
in the important case of large knudsen number is inversely proportional to the density of 
the medium [4, 5], whereas the transverse size of the exhaust, gas jet is inversely propor- 
tional to the square root of the density [6]. Therefore at a certain altitude of flight the 
size of the cloud of particles begins to exceed the transverse dimensions of the region oc- 
cupied by the gas components of the exhaust. In the first approximation, for altitudes great- 
er than this critical height one can assume that the distribution of particles in the exhaust 
trail is formed as a result of ejection of particles into a nonmoving atmosphere from a moving 
point source, which corresponds to the near-nozzle flow region determining the initial veloc- 
ity of the particles. 

Then the equation of motion for the distribution function f of particles of a given size 
is: 

~ +v  o_$ + Tv ((g + a)f ) :  o. 
Ot 

(1) 

The drag force on a particle in the medium is assumed to be proportional to its velocity: 

a = - - ~ - v ,  ( 2 )  

where the dependence of the reciprocal of the relaxation time on height is approximated as 
an exponential: 

= y(x3) : y ( ~ e x p ( - - x 3 H - ~ ) ,  (3) 
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and ~(0) depends on the size of the particle. 

The main advantage of the approximation (2) is that it allows one to obtain an analytical 
solution of the problem. The actual drag force acting on a particle moving in the atmosphere 
at supersonic speeds (usually) in the free-molecular flow regime differs from (2). However 
the main qualitative features of the results obtained using (2) will obviously continued to 
hold for a more exact form of a drag force on the particle. 

Solving (i) with the initial condition 

f (o, x, , )  = 6 (x - -  x ~ F (v) ( 4 )  

and integrating the result with respect to velocity, we obtain the spatial density distribu- 
tion of particles from an instantaneous point source: 

where 

t 

1 + P JB (t') dt' 
Oo (t, x l o, x o) = ~ ~ 

r t A2(t)[tB(t)-- f t'B(r)dr] 
"o 

x F xa - -  X l X,~ - -  . 

A ( t )  ' A (t) ' 

X 
( 5 )  

t l" 

A ( t ) =  J d t '  [1 -+- r j '  B(t")tit"I-'; 
0 0 

= ~ (x~ F 

B (t) = exp (mr + 0,5gt2H-~), 

( 6 )  

( 7 )  

( 8 )  

and m is determined from the condition 

? (I + I" .f B(t') at') = FB (t). ( 9 )  
0 

The density of particles created by a source of mass flow rate Q(t) moving along the trajec- 
tory x~(t) has the form 

t 

o(t, x)= jdt'Q(t')oo(t, xJt', x~(t')). (10) 

For further calculations we make the simplifying assumption that all particles are 
ejected into the atmosphere with a single value of the component of the velocity V a along the 
trajectory: 

F (v) ~ F•  (vl, va cos a - -  v,~ sin a) 6 (v., cos a + v~ sin a - -  AV), (ii) 

where F i is the velocity distribution function in the plane perpendicular to the trajectory, 
and 

AV = Vs--Va. 

As an example, we will assume the function F has the form 

F• (al ,  a2) = (2ave)  - I  exp [--0,5 (a~ q- a~) vl2]. 

(12) 

(13) 
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Substituting (5) and (Ii) into (i0) and using the fact that V s and ~ can depend on time, we 

obtain 

where 

p(t, x) = Q ( T ) ( % ) - I F A _  { 

7 X 
r ('r) A 2 (t - -  "r) 

x 1 --- x?~ H [I" (x) -- m] -- AV sin ~ 
A (t -- ~) ' cos ~ (~) i x 

l - - '~  

l + r ( ~ )  ~ B(t')dt" 
0 

(t -- ~) B (t -- ~) -- ~ ~ t'B (t') at' 
0 

(14) 

,g 

0 

+ H [r (*) - -  ml sin ~ (~) - -  AV (~); 

(15)  

1" ('0 = ro exp [ - -  .i V. (t')sin = (t') dt'] ; (16) 
0 

Yo = 7 (x~s); (17)  

x ~ is the position of the aircraft at t = 0 and the quantities �9 and m are found from the 
s 

equations 

t-T (18) 
7F -~ (~) = B (t - -  ~) - -  ~ .( B (t') dr' ,  

0 

P (~) = O. 
( 1 9 )  

We consider first the case when the height is sufficiently small, such that the particle 
velocity relaxation length is much smaller than the scale height H of the atmosphere. After 
a sufficiently long time the structure of the exhaust trail at a given point will be deter- 
mined by particles ejected into the atmosphere in the neighborhood of that point within an 
altitude range much smaller than H. Usually the trajectory parameters and the mass flow 
rate vary only weakly in this altitude range. Therefore Vs, ~, and Q can be considered as 
constants and equal to their values at the point x$ , which is chosen to be a much closet 
than H to the region of interest. Then for times 

r ~  1 ~ t ~ Hrog  -~ (20)  

it follows from (14)-(19) that 

where 
p (t, x) = or2oVT~F• {(xl - -  X~ to,  f ro  + g (t - t') cos ~},  (21)  

(22) 
r = (x~ -- x~,) cos ~ -- (x~ -- X~s) sin ~, 

t' = V21 [(x~ - -  x~s) cos ~ -t- (x3 - -  x~s) sin ~1. (23)  

It was assumed in (21) that the velocity due to gravity and the attained value of the trans- 
verse coordinate r are both relatively Small: 

g r ~ ' ~ V  s, r ~ H .  (24) 

In addition, small terms -H -I are omitted in (21). 

It is evident from (21) that at times larger than r~ z the concentration of particles is 
characterized by a steady transverse distribution whose center of gravity falls uniformly. 
The transverse dimensions of the exhaust can be estimated using (13): 
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R ~ v2F;- ' .  ( 25 )  

The evolution of the density distribution is easily followed with the help of (5)-(9), 
using the fact that in this case we have the inequality 

(~--F)F -~ ~ i. 

Neglecting for simplicity the force of gravity, which is valid for times 

(26) 

we find 

/ < / *  ,~ m i n ( v * g  -~, ]/Erg-~), (27) 

[ r ]3{ 
9o (t, x { 0, x ~ = 1 - -  exp ( - - r t )  F (28)  

1 - e x p ( - F t )  ' 

and hence for times t << F -I the density evolves as a result of inertial dispersion of the 
particles and a steady-state distribution is established after a time - F -I. 

In practice the most critical condition for the applicability of (21) is that the trans- 
verse dimensions of the exhaust trail be sufficiently small 

R ~ H. (29) 

Using the data of [4] for AI20 a particles of radius 5 ~m, we obtain that for vj - 1 km/sec 
the condition (29) is satisfied up to altitudes of about 75 km. We have R- i km at an 
altitude of 75 km. 

It is difficult to use (14) analytically for intermediate altitudes where R - H. How- 
ever it is possible to obtain a number of features of the space-time distribution of particles 
using the moments of the function (14). We consider the case of horizontal flight (~ = 0) 
with a constant velocity equal to the velocity of the exhaust (AV = 0) and a constant mass 
flow rate. The distribution of particles in the plane perpendicular to the flight trajectory 
can be characterized in terms of the moments 

M,~ = f p (t. xl, x~ x.)(x. - x~ dxlax~ = 

Q H f [ exp  H2(V~ 
v~ ~ 2v ~, / . a v  i -~ ro 

(30) 

where 7(m) is determined by (9) and we have used (13) for F I. Evaluating (30) approximately 
at times 

to' << t << t*, (31) 

we obtain with the help of the assumption (29): 

- o M 1  ~.., R z R ~ 

~ - x ~  - -  M---o- - 2 - - - i f -  + c (0 - f i r  r o t ,  

M.a M2 R 2 [ I +  7 R 2 ~ ] 
1x~ - -  73)2 -- Mo M~ 16 H z q-2C(t )  (rot)~ , 

(32) 

(33) 

| 

C ~ t )  = (2~) :2 ,exp I __ 9R 2 R2Fot  . 

We see from (32) that even at the initial time the center of gravity of the trail is dis- 
placed upward with respect to the trajectory by the quantity R2/2H, which is due to an asym- 
metry in the dispersion of particles in the upward and downward directions. The origin of 
the time-dependent terms in (32) and (33) can be understood by analyzing the motion of an 
individual particle with initial velocity v~ in an atmosphere with an exponential density 
distribution (and assuming g = 0): 
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xa (l) = x~ -- H lit __ vexp ~t 

1 q- @ (exp ~t - -  1) 
P where 

= F - - v ~ H  -~. (36) 

We see from (35) that when ~ < 0, i.e., when the initial upward velocity of the particle is 
sufficiently large, the particle, after 'leaving' the atmosphere, then moves with a constant 
residual velocity v~-HF. For (32) and (33) this means that particles with sufficiently high 
initial vertical velocities which are permitted by the distribution function (13) escape 
upward, and hence the center of gravity of the density distribution (32) shifts with time 
and its vertical size (33) increases. It is obvious that this effect will take place as long 
as we can neglect the force of gravity. 

From (33), and also from the fact that the inertial stage of expansion (t~F~ I) is 
unsteady, we conclude that when 

v l r T l - - ~  H ( 3 7 )  

the exhaust trail becomes significantly unsteady. For AI20 a particles of radius 5 ~m and 
v I - 1 km/sec, the trail can become unsteady at altitudes greater than 90 km. 

We transform to the limiting case of very large altitudes where air resistance can be 
neglected. Analysis of (5) with the conditions 

gives 

%, ~ 0, r ~__ 0, ~?/P = exp ((x ~ -- xa)/H ) 

Po (t, x]O, x o) = t-aF {(x + 0,5gt z - -  x o) t-~}. 

(38) 

(39) 

We obtain the density of particles behind a continuous source for the case of linear, 
constant-acceleration motion of the aircraft (~ = const): 

V~ = V -k- at ,  

where V and a are the velocity and acceleration at the point xs~ . 
obtain from (14) 

(t, x)  - -  Q • 
(t - -  "~)z [V~ + (g s in  ~ + a) (t - -  z)l 

{ o } x ~ - - x ~  r + 0 ,5g  (t - -  "r)~ cos a 
• F •  t - - - c  ' t - - s  ' 

where 

(40) 

Using (38) and (40), we 

(41) 

t - -  "~ = [ - -  Va q- V-V 2 q- 2L (a q- g sin a)]  (a ,+ g s in  a ) - l ;  

L Vt q- 0,5at z (x.: o = - -  - -  x2~) cos o~ - -  (x a - -  X~s) sin o~. 

(42) 

(43) 

Using (41) and (13), we estimate the thickness of the exhaust trail in the i direction. For 
the point (X~s , x~s) we have 

R "-" V L [ - -  V~ n l -VV]  -1- 2 (g s in  a -+- a) (Vt -k- 0 ,5a?) ]  (g sin ~ 4- a ) - L  (44) 

For small times 

R ,~ v• (Vt + 0,SatD V71. (45) 

This equation shows that the particles are contained within a cone of angle tan -I (vi/v a) 
moving with a constant acceleration. 
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Fig. i. Lines of constant particle den- 
sity in the plane x I = X~ : i) p/p = 10-3; 
2) 3.10-4; 3) 10-4; 4) 3.10 -5, where p = 
Q[2~v2.Va ]-I Va~,-2 ; n is the distance from 
the alrcraft n u m e r i c a l l y  e q u a l  t o  V a ( x 3 - X a s  
and L a r e  in  km).  

As an example of the spatial distribution of particles at large altitudes we show in 
Fig. 1 the lines of constant density calculated from (41) and (13) for the case of horizontal 
flight with a constant velocity. 

NOMENCLATURE 

f, velocity distribution function of particles (depends on position and time); t, time; 
• vector referenced to an earth-fixed coordinate system; x I and x 2 are in the hori- 

zontal plane with x• perpendicular to the trajectory plane; x 3 is the vertical coordinate; 
x~ , position vector of the aircraft (source of particles); v , particle velocity; a , par- 
ticle acceleration due to braking in the atmosphere; g , acceleration due to gravity; ~, 
reciprocal of the velocity relaxation time; H, scale height of the atmosphere; f(v) , initial 
velocity distribution function; B(t), defined by (8); Q(t), mass flow rate of particles; 
~(t, x) density of particles created by a continuous source; p0(~,xl0, ~) density of particles 
created by an instantaneous point source at the point x ~ ; ~, angle of the trajectory to the 
horizontal; Vs, velocity of the aircraft; V a velocity of the exhaust gases at the nozzle exit 

plane; Fi, initial distribution function for the transverse components of the velocity; R, 
transverse dimension of the exhaust trail; t*, time up to which one can neglect the effect 
of gravity; v~, characteristic value of the vertical velocity; v• characteristic value of 
the initial transverse velocity; F, determined by (17); L. determined by (43)~ 

LITERATURE CITED 

i. L.D. Strand, J. M. Bowyer, G. Varsi, E. G. Laue, and R. Gauldin, J. Spacecraft, 18, No. 
4, 297-305 (1981). 

2. R.W. Herman, J. Spacecraft, 18, No. 6, 483-490 (1981). 
3. H.F. Nelson, J. Spacecraft, 21, No. 5, 425-432 (1984). 
4. Carlson and Hoglund, Raket. Tekh. Kosmon., 2, No. ii, i04-i09 (1964). 
5. M.N. Kogan, Rarefield Gas Dynamics [in Russian], Moscow (1967). 
6. G.N. Abramovich, Applied Gas Dynamics [in Russian], Moscow (1976). 

417 


